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NOVI PRISTUP SMANJENJU GUBITAKA POMOCU ANALIZE MREZE | UVIDA U
ODNOS ENERGIJA - OPTERECENJE

SAZETAK

Operatori distribucijskog sustava suoCeni su sa vise od 200 milijardi dolara godiSnje u gubicima i
kradi $to se postepeno povecava za 2,5% godiSnje dok su istovremeno pod pritiskom da smanje gubitke i
povecaju ucinkovitost u mrezi.

Naj¢esc¢e ne postoji dovoljno provedenih nadzora kako bi se to¢no odredio uzrok ovih gubitaka
Sto otezava prepoznavanje preopterecenih transformatora, nezakonitih prikljuenja i pogreSaka u
mijerenju koje ugroZavaju pouzdanost mreze, sigurnost ljudi i financijske rezultate.

U ovom ¢lanku se opisuje tehnoloSki pristup kojim se omogucuje bolja percepcija pogonskog
stanja mreze, temeljen na stvarnim mjerenjima i analitickom predvidanju.

Prikupljanjem i analizom odredenih podataka o mreZi poboljSava se sposobnost predvidanja
preoptereéenja i ispada. Trenutni podaci iz mreZe smanijuju financijski rizik kombinirajuci konvencionalnu

naplatu i podatke pametnih mjerenja o trenutnoj potrosnji u mreZi te na taj naéin to€no odreduju mjesto
krade kao i pogreSke u mjerenju/naplati.

Kljuéne rije€i: smanjenje gubitaka, analiza mreze, predvidanje, ustede

A NOVEL APPROACH TO LOSS MITIGATION USING GRID ANALYTICS AND
ENERGY/LOAD BALANCE SURVEYS

SUMMARY

Utilities are faced with more than $200B in annual losses and theft, which are steadily increasing
by 2.5% per year, yet are under pressure to reduce losses and increase efficiency across the grid.

There is rarely enough monitoring in place to pinpoint the cause of these losses making it difficult
to find overloaded transformers, illegal bypasses and metering errors that compromise grid reliability,
public safety, and financial performance.

This paper describes a technology-based approach to provide situational awareness of grid
operating conditions based on actual line measurements and predictive analytics to provide insight into
the operating condition of the distribution grid.

Bringing visibility to an otherwise invisible network improves the ability to predict overloads and
avoid outages. Actual line data reduces financial risk by truing up conventional billing and smart meter
data to the actual consumption on the lines, pinpointing theft as well as metering/billing errors.
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1. INTRODUCTION

11 In-Grid Data — pinpointing problems in the grid

With enough money and resources, it is conceivable to monitor every piece of every distribution
line and every transformer and every other asset in the distribution network with no gaps. If such a
moonshot project were ever funded, and there were enough data handling and analytics capacity to
understand this in-grid data, it would then be possible to determine the cause of every problem and
identify every opportunity for optimizing grid operations.

No utility has the financial resources, however, to deploy such a gapless wide area monitoring
system in the low voltage and medium voltage network. There are an estimated 1.5 million km of MV and
LV distribution lines in Europe alone [1]. Many utilities have instead deployed systems on the edges, with:
a) substation monitoring with intelligent devices, and b) automated meter reading and smart meter
systems. In both cases, part of the goal is to extrapolate and model the distribution grid using only what
can be measured from the power flowing into and out of the grid segment.

. Meter Data
\:l In-gnd Data Available:
i 100s of GB
Gibetation Comes from this area - s 0
Data
Available: . %
10s of GB o .. D D
— ~ =z

Figure 1. Simple grid segment showing in-grid data

Sadly, the promise of deep knowledge of grid operations through substation devices at the core
and billing meters at the edge of the grid has not been met. Power flow models can only predict flows
based on known loads. Consumption profiles may be aggregated to estimate load factors for transformers
but phase mis-association, unmetered loads and diversions and other operational deficiencies can make
these models inaccurate at best and misleading at worst. Sources of essential in-grid data remain elusive.

2. PREDICTING PROBLEM AREAS

Surprisingly, when a monitoring or metering project is funded, there is a common assumption that
all substations or all consumers should be treated more or less equally and furnished with approximately
the same level of technology. This one-size-fits-all approach overlooks a key consideration: losses and
other problems in the grid are not uniformly spread throughout the network. This fact allows us to
approach the task from another angle.

Take the example of smart meter rollouts, which are often cited as a key part of the battle to
reduce theft and reduce losses. Smart meter deployments are extremely capital-intensive projects. The
EU has called for 80% of citizens to be equipped with smart meters by 2020, which amounts to 200
million smart meters [2].

Conventional wisdom leads to deployment of smart meters for the largest consumers first. If the
goal is to reduce theft, however, experience shows that theft is more common among residential



consumers, medium-sized businesses, and rural consumers where there is less visibility of illegal
connections.

Any optimization task can benefit from recognizing that some areas in the grid are more likely to
have problems than other area. Some variation of the Pareto principle is a reasonable assumption: that
utilities can expect to find 80% of the problems in 20% of the grid. Alternatively, the greatest potential for
optimization may be within just 20% of the grid.

3. TECHNICAL AND NON-TECHNICAL LOSSES

Technical losses are observed throughout the distribution grid and are generally unavoidable,
since they are primarily caused by resistive losses on conductors, and both copper losses and core
losses in the transformers. Non-technical losses are the result of a wide range of causes, including:
unmetered loads (e.g. streetlights), intentional or inadvertent meter bypass, illegal and undocumented
connections, meter tampering, and errors in metering or billing. Sometimes these losses are also called
“commercial losses”.

In any distribution network there will be few grid segments with very low technical losses, and few
grid segments with exceptionally high technical losses. The normal probability distribution function is a
reasonable model for the likelihood of finding technical losses in the grid.
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Figure 2. Probability of technical and non-technical losses

The probability of finding non-technical losses, on the other hand, may be modeled using an
inverse distribution. This is because most grid segments will have very low non-technical losses, and a
decreasing number of grid segments will have higher losses — up to 100% loss in severe cases.

Overall losses may be modeled with the convolution of the two probability distribution functions,
which shows that the majority of the grid segments with higher losses will be due to non-technical losses.
The challenge is one of identifying the segments with the highest combined losses.
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Figure 3. Probability of total losses and highest losses
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GRID SEGMENTATION

Predicting problem areas can be approached in two stages: defining grid segments, and then

developing a risk model that is applied to the grid segments. In designing a methodology to find high-risk
grid segments, it is important that the grid segments are defined in a predictable and repeatable manner.
A grid segment may be treated as a small grid management area. Some of the possible attributes that
can be used to define grid segments:

Can the segment be traversed in a normal working day if a field investigation is necessary?
Can the number of customers of each type and tariff be assessed within a normal working day?
Can aggregate loads and consumption be estimated and verified?

Are the conductors accessible for sensor placements if needed?

Can the segment be divided into sub-segments if needed?

Can the risk model and risk metrics be applied on the segment?

Is the segment size appropriate for measuring the expected level of losses?

Defining grid segments is a non-trivial matter that can be refined as the optimization program unfolds,
and can be adjusted to the business objectives. Suitable grid segmentation leads to better utilization of
field investigators’time and associated resources.
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Figure 4. Some possible parameters used to define grid segments

RISK MODELING

Having defined the grid segments, the next step is to define a risk model. Risk modelling has its roots
in the finance industry, where investment and insurance companies have developed sophisticated
methodologies to evaluate key risk indicators, apply specific assumptions, and use the resulting model to
drive strategic decision making.

In the context of electricity distribution, applying a risk model to sell-defined grid segments leads to
the risk-based ranking of the segments. This ranking determines the corresponding priority of in-grid data
analysis.

The risk model can use various existing data sources, for example:

e Billing data, and billing data analytics (e.g. average annual revenues, trends)

e Metering data, and metering data analytics (e.g. load profile anomalies, alarms)

o Customer data, and customer data analytics (e.g. payment history, disconnects, complaints)
e Load factor data and trends (i.e. actual consumption relative to circuit capacity)

e Grid segment monitoring data and trends (i.e. line metering or transformer metering data)

For each grid segment, the risk Rs is assessed as follows:

R =D (1, oxW,) (1)



where Irf is the impact of a risk metric, and Wrf is the weight. The weighting of the risk metric may be a
simple threshold or multiplicative factor, or it may be a complex formula:
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Figure 5. Risk factor weighting formulas

Flexibility in applying weights to risk metrics is an important part of honing the model to a utility.
Local expertise and on-the-ground knowledge gives insight into the true grid operating conditions, and
elevates the risk model from the generic to the specific.

When the risk metrics have been selected, as well as the impact and weighting factors, we can
apply the risk model to the grid segments and create a ranked list of grid segments.

Figure 6. Visualizing grid segments targeted for optimization

An important consideration is that the risk ranking may be applied multiple times, first at a high
level to rank the grid segments, then at a narrower level to rank sub-segments. The risk model may also
be adjusted as the data sources are refined. Furthermore, by feeding the results of field investigations
back into the risk model, we set the basis for machine learning.



6. CASE MANAGEMENT

6.1. Triage

For each of the identified high-risk grid segments, the case manager must decide if further
investigation is justified. In the world of risk and case management this is often referred to as triage where
the priority is determine by assessing the severity of the problem.

Some distribution grid segments can be triaged because of individual knowledge or policy
decisions. A more structured approach to triage may be based on a cost benefit analysis (CBA), in which
the expected benefit of fixing the problem is assessed relative to the cost of doing so. Some simple
examples:

e Is it worthwhile to pursue electricity theft on a residence, if the cost of reducing the loss is twice
the annualized value of the loss?

o If the losses in a target grid segment are high, but the location is very remote and the cost to
travel to the area is higher than the value of the losses, should it be ignored?

e Should a transformer be upgraded if the cost of the newly installed transformer will be recovered
through efficiency improvements within 5 years?

Note that CBA can be expressed in terms not strictly monetary. For example, in cases where
consumers (or a whole consumer category) might be identified as economically disadvantaged, utilities
can approach the problem as a social issue and recognize their losses as a subsidy. Even in this case,
the losses may still need to be found and quantified.

For a more complex CBA, the analysis may also consider reliability, stability, and corporate
policies. CBA will often include the net present value (NPV) of the benefit over the life of the fix. As a
result of triage, some high-risk grid segments may simply be tagged as having known losses and/or set
aside for future assessment.

6.2. In-Grid data

For the targeted grid segments worthy of investigation, we use case management and field
investigation tools to collect & validate necessary in-data. The following multi-stage approach applies:

Planning:

Select a target grid segment

Review and incorporate previous investigation results, if any

Validate grid topology, incorporate latest grid topology changes

Prepare investigation plan, propose sensor placement, validate and adjust
Review/confirm access to metering data, billing data grid assets as required

Field data collection

Deploy sensors and record metering data

¢ Note topology changes and other field anomalies

Validate and associate sensor data, metering data, billing data

Reporting

Generate energy balance report(s), phase balance report(s), transformer load report(s), etc.
Identify cause of loss & quantify loss

Run additional reports as required (Phase Association, GIS data discrepancy, etc.)
Update KPIs and dashboard with results

6.3. Documentation

Serious causes of loss may trigger an internal audit or a legal challenge by a consumer.

For this reason it is essential that at each stage of the field data collection and reporting we
anticipate the need to justify the steps taken, and to prove that the data and results are accurate and
complete.



All steps and all results must be documented and placed in a secure repository for future
reference. Furthermore, it is important to demonstrate that the investigation was an evidence-based
undertaking, untarnished by discriminatory practices. With detailed data showing actual line conditions
time-stamped at the time of collection, we can supply sound, unbiased evidence in cases that may take
months or years to litigate.

7. IN-GRID ANALYTICS

Significant value derives from an in-depth analysis of the results of the field investigations as the
cases are processed. Unlike conventional meter data analytics, it is often possible to predict similarities
between grid segments based on findings, and to predict grid performance in other grid segments with
similar characteristics.

A simple example of the in-grid analytics approach compared to meter data analytics alone might
serve to illustrate the advantage of this approach.

71. In-Grid Sensor data analytics vs Smart Meter data analytics

In this scenario, assume all four homes are consuming approximately the same amount of
energy: say 2 kW average (48kWh per day) and are being supplied by a 25kVA transformer T.

The load on transformer T should be approximately 8kW. If the bypass losses B1 and B2 are
each 10kW loads — which is not unusual for marijuana grow operations, for example — then the total load
on transformer T increases to 28kW.

Using smart meters and meter data analytics, the voltage drop caused by the excess load on
house 2 meter will register as a low voltage outlier, because the illegal tap B1 is on the line supplying the
house. All of the smart meters will register the same voltage drop caused by illegal tap B2 and it will
remain undetected. The aggregate load on the transformer T will be estimated as 18kW, which is still
within the rating of the transformer.

Using in-grid data analytics based on data from sensors S1 and S2, the actual load conditions
can be determined (28kW) and the risk of an overloaded transformer will be registered.
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Figure 7. lllustrating limitations of meter data analytics



The example shown in figure 7 is just one scenario where smart meter analytics alone can fail to
identify loss and the resulting risk to grid assets. Many other problems relating to grid efficiency can be
determined using in-grid analytics based on in-grid sensor data.

Furthermore, as the in-grid data is collected during the course of case management and field
investigations, a data model of the distribution grid can be built. This provides a virtual grid monitoring
system that forms the basis of a wide range of additional analyses.

Vendors of big data analytics solutions aimed at the utility industry rely heavily on meter data
analytics (with perhaps some transformer monitoring data) to estimate, extrapolate or calculate the actual
grid operating conditions. Despite being capable of integrating weather data, consumer data, and
numerous other inputs, one key element is hidden from them all — in-grid data — that exposes actual grid
operating information.

8. CONCLUSIONS

Risk-based assessment of the electricity distribution grid is a cost effective alternative to the
massive investment required to implement continuous wide area monitoring. By focusing analytics and
resulting field investigations on the segments of the grid that are most likely to have severe loss
problems, the utility can gain a good picture of the problem areas using a cost effective and scalable
approach.

Furthermore, the need to address these losses continues to grow. Many utilities struggle to
recover revenue from unavoidable losses, while regulators are limiting the practice of passing the cost of
losses onto the consumer. The most immediate source of increased revenues for many utilities come
from within their distribution grids.

Developing a risk model also allows the revenue protection group to align with an over-arching
corporate enterprise risk strategy. Most large utilities have risk management processes, and it is often the
office of the Chief Financial Officer (CFO) or the Chief Risk Officer (CRO) that is tasked with overall
strategic risk management and governance. Enriching their insight with a risk-based assessment of
avoidable losses can improve the entire risk management framework.

True grid intelligence provides the foundation of situational awareness of grid operating
conditions based on actual line measurements and in-grid analytics. The methodology described can be
used to find overloaded or unbalanced transformers, illegal bypasses and connections, metering errors
and other problems that compromise grid reliability, public safety, efficiency and the financial performance
of the enterprise.
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